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Abstract

This paper proposes an approach to automatically synthesize sound
and precise abstract operators for the static analyzer in the eBPF
verifier. The eBPF verifier ensures that only safe user-defined pro-
grams are loaded into the kernel. An unsound operator can lead to
unsafe programs being accepted, while an imprecise operator can
cause safe programs to be rejected. Our approach starts by generat-
ing candidate operators using input-output examples tailored for
the eBPF verifier’s abstract operators and iteratively refines it for
soundness and precision. Using this approach, we have generated
more precise variants of existing operators. Our approach also gen-
erates numerous sound and unsound operators that can serve as
test suites for existing eBPF verification and fuzzing frameworks.
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1 Introduction

The eBPF ecosystem has emerged as a general-purpose platform for
safely extending the functionality of operating system kernels with
user-supplied programs. The safety of this ecosystem hinges on
the correctness of the eBPF verifier: a static analyzer that enforces
memory safety, type correctness, and bounded control-flow. The
verifier symbolically explores every code path in the eBPF program
and accepts a program only if it can prove that no path leads to
unsafe behavior under any input.
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The verifier performs abstract interpretation to track the possible
values that program variables (i.e., registers in eBPF bytecode) can
take across all executions. The verifier uses succinct representa-
tions to track register values, termed abstract domains [37]. For
example, it uses an interval abstract domain to track the minimum
and maximum values a register may hold (i.e, [min, max]), and a
bitwise abstract domain, called tristate numbers, which tracks each
individual bit of a program register. Together, the representations of
a register from all the abstract domains form the register’s abstract
value at verification time.

The verifier uses abstract operators to evolve the abstract state of
each register depending on the concrete instructions in the input
eBPF program. Consider an instruction in eBPF bytecode such as
r2 = %x(u32 *x)(r10 - r1), which loads a 32-bit word from the
stack by subtracting r1 from the frame pointer r10. If the verifier
determines that r1 always lies in the interval [-10, 1@], it rejects
the program because the offset can be potentially negative, result-
ing in an out-of-bounds stack access. However, if the instruction
is preceded by r1 &= 0xf, the verifier can update the interval to
[0,15], allowing the verifier to prove that the access is safe. In-
deed, such code patterns are common in hand-written eBPF code to
“guide” the verifier into accepting programs. It is the job of the veri-
fier’s abstract operator to compute these updated values soundly
and precisely. Soundness refers to the property that a register’s
abstract value includes all concrete values possible at run time for
that register. Precision refers to the property that the abstract value
excludes concrete register values that will never occur at run time.

Unsoundness in the verifier has been exploited to perform ar-
bitrary kernel reads/writes and privilege escalation attacks [14,
18, 24, 25]. Unsurprisingly, several academic and industry efforts
have focused on testing or formally verifying the soundness of
eBPF abstract operators [4, 10, 12, 20, 29, 33, 34, 36, 37]. Apart from
soundness, imprecision in the static analyzer can cause valid, safe
programs to be rejected, impairing the usability and adoption of
eBPF for legitimate applications [5, 8, 23, 39]. For instance, after
r1 &= 0xf, a sound but imprecise abstract operator might con-
clude that "bitwise AND with a positive constant always yields a
non-negative result” and update the interval for r1 to [0, INT_MAX].
While the runtime value of r@ will indeed be within this range, this
bound is too imprecise: it is not helpful to prove that the memory
access will stay within the 512-byte eBPF stack. As a result, the
verifier will conservatively reject the program.

Manually crafting sound and precise abstract operators is hard.
The numerous patches to improve both the soundness and precision
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of eBPF abstractions highlight the importance of this problem [1-
3, 5, 8, 13-15, 18, 23-25, 28, 32, 39]. This paper aims to develop
techniques to automatically synthesize sound and precise eBPF
abstract operators. Our work is inspired by counterexample-guided
inductive synthesis (CEGIS) [31], and recent work on synthesizing
abstract operators, namely Amurth [16]. CEGIS is a classic frame-
work used to synthesize programs that satisfy a given specification.
Amurth builds on CEGIS by introducing separate specifications for
soundness and precision to synthesize abstract operators [16, 17].

We design techniques to synthesize sound and optimally precise
abstract operators for the abstract domains used in the eBPF verifier.
Our approach works by iteratively guessing an abstract operator
based on examples of inputs and outputs and then checking that
the guessed program satisfies the specifications of soundness and
precision (§3). If the operator fails the specification, the underlying
solver can produce a counterexample, which is added to the set of
examples and used to guess the next abstract operator. The CEGIS
iterations guess several abstract operators (which may be unsound
or imprecise) along the way, provably converging to a sound and
precise abstract operator.

As an added benefit from this iterative procedure, we observe that
the intermediate abstract operators produced by the algorithm can
be used to craft test cases for existing eBPF verifier checking tools
like Agni [37] or Buzzer [10]. We believe that such test cases, many
of which include “nearly sound” (but actually unsound) abstract
operators, constitute interesting adversarial tests for such tools,
helping improve the assurances provided by the checkers.

In summary, our contributions are as follows. (1) Our approach
automatically synthesizes sound and precise abstract operators for
unsigned intervals and tristate numbers. We are the first to synthe-
size operators for tristate numbers (§3). (2) We discover new, more
precise abstract operators for unsigned interval addition and sub-
traction (§4). A patch implementing these precision improvements
has been merged into the latest Linux kernels [35].

2 Background

Static analysis in the eBPF verifier. To statically prove safety, the
eBPF verifier uses abstract interpretation [6], a technique that ap-
proximates the set of possible program behaviors for all inputs.
At each program point, the verifier maintains a summary of the
program state, mapping each program register to its correspond-
ing abstract value. The abstract value of a register conservatively
captures some property of that register at the given program point,
such as the possible values it may hold, its liveness information, or
the kind of memory it may point to. Each abstract value is drawn
from an abstract domain, which defines the kinds of properties that
can be represented and how they evolve under program operations.

Value tracking and interval domains. The verifier’s value tracking
analysis aims to conservatively estimate the set of values a program
register may hold across all executions. This estimation is typically
done using numerical abstract domains, such as the interval domain.
In this domain, a program register p is represented by an abstract
interval value P = [P}, P,], indicating that P; < p < P, at that
program point. The verifier processes each instruction in sequence,
updating the interval accordingly. For example, an instruction like
p += 10 would update the interval to [P; + 10, P, + 10].
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Bitwise reasoning with the tristate domain. To improve precision
for bitwise operations, the verifier also employs the tristate num-
ber (tnum) domain [36], which tracks for each bit, whether it is
definitely 0, definitely 1, or unknown (x) across all executions. For
example, if p is a program input, it is completely unknown and there-
fore represented as xxx. . . x (all xs). The instructionq = p & 0xf
masks out all but the lowest four bits of p, yielding @. . . @xxxx for
qg. In the verifier, a tnum is represented using a pair of u64 integers:
{value, mask}. A bit is known to be 0 or 1 if the corresponding
mask bit is 0, in which case the value bit gives its concrete value.
If the mask bit is 1, the bit is unknown (x), regardless of the value
bit. For instance, the tnum from our example 0. . . 9xxxXx is repre-
sented with {value=0, mask=0b1111}, while the tnum 0. ..01x
is represented with {value=0b@10, mask=0b0o1}.

The tristate domain is particularly effective for reasoning about
bitwise operations, where interval domains often lose precision.
Together, the interval and tristate domains enable the verifier to
prove safety properties.

Concretization and abstraction. The concretization function y and
the abstraction function « relate the concrete behavior of a program
to its abstract representation and are used to reason about the
correctness of approximation. Function y maps an abstract value
to the set of concrete values it represents (e.g., y([3,5]) = {3,4,5}),
while @ maps a set of concrete values to the most precise abstract
value that overapproximates them (e.g., «({3,4,7}) = [3,7]).

Abstract operators. An abstract operator F takes abstract inputs
and approximates the effect of applying the corresponding concrete
operator f to all possible concrete values those inputs represent. An
abstract operator must be sound and precise. Soundness requires
that, for any input(s) to F, the output must include all possible
concrete results of applying f to values drawn from the input(s).
Precision requires that the output must exclude concrete outputs
that are not a result of applying f to values drawn from the in-
put(s). The ideal operator computes a o f oy, i.e., it concretizes
the inputs using y, applies f, and then abstracts the result using
a. This computation yields the most precise and sound result in
the given abstract domain. Any abstract operator that computes
a o f oy exactly is called the optimally precise operator for f in
that domain.

However, computing « o f o y exactly is often impractical. For
instance, performing the addition operation on two intervals P =
[50,100] and Q = [150, 200] requires evaluating 2601 combinations
of x + y where x € y([50,100]) and y € y([150, 200]), and then ab-
stracting the result using @. This exhaustive enumeration is clearly
inefficient. Instead, most domains define efficient closed-form func-
tions, which may overapproximate a o f o y. In the interval domain,
for instance, the addition of two intervals [P, P,] and [Q;, Q,] is
implemented as [P; + Q;, P, + Q,]. This expression is, in fact, opti-
mal when reasoning over unbounded integers because it computes
a o f oy exactly. However, in the case of bounded machine in-
tegers, e.g., 8-bit unsigned integers, this computation works only
when no overflow occurs. In cases like [50, 100] + [150, 200], some
concrete sums exceed the unsigned 8-bit maximum of 255. The
abstract operator must conservatively return [0, 255] to remain
sound, sacrificing precision.
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Automated program synthesis. Program synthesis is the task of
automatically generating programs that satisfy a user-provided
specification of their input-output behavior. Specifications can take
the form of general correctness properties or input-output examples,
and are typically encoded as logical constraints that the synthesized
program must satisfy. Formally, given a specification ¢gpec, we seek
a program P such that, for all inputs 7 and outputs O = P (1),
@spec (£, 0) holds. This process is challenging because synthesis
must search over the space of all possible programs, which grows
exponentially with the length of programs considered.

Counterexample-guided inductive synthesis (CEGIS). To make the
search tractable, a common strategy is to use counterexamples pro-
vided by an SMT solver to iteratively refine candidate programs
that fail to meet the specification. CEGIS [31] is an iterative tech-
nique that breaks the synthesis task into two alternating phases:
(1) synthesize a candidate program that works on a finite set of
inputs, and (2) verify whether the candidate satisfies the specifica-
tion for all inputs. The process begins with a finite set of inputs S
and uses an SMT solver to synthesize a candidate program #, that
satisfies the specification ¢spec for the inputs in S. It then verifies
if this . generalizes correctly (i.e., it correctly satisfies @spec for
all inputs), also using an SMT solver. If the verification fails for £,
the solver returns a counterexample, i.e., an input for which the
program is incorrect. This counterexample is added to S, and the
loop repeats. Over time, the example set grows, guiding synthesis
towards programs that generalize correctly to more inputs. The
process terminates when the candidate P, verifies successfully, i.e.,
it satisfies the specification ¢spec for all inputs.

Component-based synthesis. To synthesize programs, we must de-
fine a language in which programs can be expressed. One approach
is to use a library of components, which are low-level building blocks
such as arithmetic and bitwise functions [11]. Each component
specifies its arity and input-output semantics, expressed as logical
constraints. Programs are constructed by composing components.
The synthesis task becomes assigning each component to a specific
line number and finding valid placements and dataflow between
the inputs and outputs of the components. These requirements are
encoded as constraints over each component’s line number assign-
ments and solved with the help of an SMT solver, typically using
CEGIS.

3 Abstract Operator Synthesis

We aim to automatically synthesize sound and precise abstract op-
erators for use in the eBPF verifier. Given a concrete eBPF operator
f, we seek an abstract operator F that conservatively overapprox-
imates f (i.e., soundness) while excluding as many unreachable
results as possible (i.e., precision). For illustration, we assume f and
F are binary operators (i.e., take two inputs and return one output).
Our algorithm, presented in Figure 1, is inspired by Amurth [16].
It contains two CEGIS loops and proceeds in two steps. Step A
uses a CEGIS procedure with a soundness specification to syn-
thesize a sound candidate operator. Step B then iteratively refines
this candidate also using a CEGIS procedure, guided by a preci-
sion specification, to produce a more precise operator that remains
sound.
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Figure 1: Diagram illustrating our algorithm for synthesizing an ab-
stract operator. Step A synthesizes candidates F,. guided by (positive)
counterexamples. When a sound candidate is found, it is set to F
and passed to Step B. Step B refines F to synthesize more precise
candidates Fy, along with negative examples e,, that F. excludes, but
F includes. If F, is sound, F is updated to FC, and the loop continues.
When no further refinement is possible, the algorithm returns F.

3.1 Overview of the Algorithm

Step A: Candidate search based on soundness. This step aims to syn-
thesize a sound candidate operator F corresponding to f. It can be
seen as an application of classic CEGIS to the setting of abstract op-
erator synthesis using a specification of abstract operator soundness
(§2). We express the soundness requirement using positive examples:
tuples (P, Q, z) where P and Q are abstract inputs, such that z must
be contained in F(P, Q), and z is a concrete value obtained as a re-
sult of applying f to concrete values drawn from P and Q. Positive
examples constrain the input-output behavior of F by requiring
that its output contains the specified concrete value. We initialize
the CEGIS loop with randomly generated positive examples. The
synthesis phase encodes the soundness constraints and queries an
SMT solver for a candidate F, constructed from our fixed library
of components. Then, the verification phase checks whether there
exists any new tuple (P, Q1, z1) such that z; ¢ F.(Py, Q1), where
z; is a concrete value obtained as a result of applying f to concrete
values drawn from P; and Q;. If so, this counterexample is added
to the example set, and the loop repeats. The loop terminates when
F. is sound. By the end of Step A, F is established as F, our first
sound abstract operator for f.



eBPF °25, September 8-11, 2025, Coimbra, Portugal

Step B: Refinement of candidates based on precision. Soundness
alone is insufficient. A candidate operator F for the unsigned inter-
val domain obtained from Step A, that always returns the interval
[0, UINT_MAX] regardless of the input, is trivially sound because
it always includes all possible concrete results. Instead, we want
the abstract operator to exclude concrete results that cannot occur,
thereby producing tighter output intervals. To improve precision,
we borrow the idea of negative examples from Amurth [16], by
writing down a precision specification that identifies inputs where
the current operator F is overly conservative. Specifically, we ask:
is there a new tuple (P, Qy, z2) where z, € F(P2, Q2), such that a
more precise operator I?C excludes z,, ie., z; ¢ E(Pz, Q,), while in-
cluding all the positive examples in E, and remaining sound. Such
an example is called a negative example because it highlights a
spurious result that the operator should avoid.

Step B also uses a CEGIS loop. The synthesis phase searches for
a more precise operator F.and a negative example (P, Q, z) that
it excludes. However, F, may be unsound. So we verify F,, asin
Step A. If a soundness violation is found, we add the corresponding
counterexample to the set of positive examples. If no such violation
exists, we promote F, as the new candidate, save the negative ex-
ample, and continue refining. This loop continues until no further
improvements are possible or a specified time budget is exhausted.
By the end of Step B, F has been refined to a sound and precise
abstract operator for f.

3.2 Illustration of the Algorithm

We illustrate the algorithm by synthesizing an abstract operator
F corresponding to a concrete operator f for 8-bit unsigned in-
teger addition (+ys, following standard C semantics). We assume
a component-based synthesis setting and a library of {+, —, X, k}
components, where k is a constant integer literal. To bootstrap the
synthesis, we populate a set E,, with positive examples (P;, Q. z,)
by generating random abstract values P; and Q;, sampling concrete
values x € P; and y € Q;, and finally setting z, = f(x, y). For exam-
ple, the tuple ([2, 5], [4, 8], 10) is a positive example for unsigned
interval addition because 4 € [2,5], 6 € [4, 8], and 4 + 6 = 10.

Synthesizing a candidate operator using synth,,;. We want to synthe-
size a candidate that satisfies the examples in E, using our library
of components. The SMT formula for synthesizing such a candidate
F, is as follows (Eqn. 1).

synthpos (Ep) = 3F, : z € F.(P,Q) (1)
(P,Q.z)€Ep
An example of this query, based on some positive examples, is:
dF. : 10 € F.([2,5],[4,8]) A5 € Fc.([1,1],[4,4]). Suppose the
solver comes up with a candidate F.(P, Q) = [0,2 X Q,] because
10 € [0,16], and 5 € [0, 8].

Verifying the soundness of F using verifyp,g. Our candidate F, may
be unsound. We check the soundness of F, by constructing a for-
mula that asks if there exist any input abstract values P and Q and
concrete values x € P and y € Q, such that F.’s output does not
contain f(x,y), as shown in Eqn. 2.

verifyprog (Fe) = A%, y,P,Q: x€PAyeQ A f(x,y)¢F:(P,Q) (2)
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If no such values x, y, P, Q exist, our candidate operator F, is sound
for all inputs. However, if such values do exist, e, = (P, Q, f(x,y))
constitutes a positive counterexample for the unsoundness of F,
because F.’s output does not include e,,. For example, if F.(P, Q) =
[0,2 x Qy], the solver might come up with ([5,5],[2,2],7) as a
counterexample. We collect such positive examples in E,,.

Arriving at a sound candidate F. Step A of our algorithm employs a
CEGIS loop by calling synthy,s and verify,rg in succession. When-
ever synthp,s gives us a candidate operator F,, we proceed to check
its soundness using verify,rog. If verify,rog gives us a counterexam-
ple, we add it to E, and try to synthesize a new candidate. When
verify,rog does not return a counterexample, we have a sound can-
didate operator. The sound candidate F,. obtained at the end of Step
A is set to F and passed to Step B.

Synthesizing a more precise operator F,.. We aim for our operator
F to approximate & o f o y as closely as possible (§2). Suppose
we obtained a candidate operator F(P,Q) = [0, P,+Q,] from the
previous Step A. While F is sound, it significantly overapproximates
the output. We use negative examples to improve the precision of
F.

A negative example is only meaningful in the context of a pair of
abstract operators. The example serves as a witness to the precision
improvement of one operator over the other. Consider example
en = ([2,4],[3,5],1). Operator F(P,Q) = [0, P, +Q,] includes e,
since 1 € [0, 9], whereas operator F(P, Q) = [P;+Qy, 255] excludes
e, because 1 ¢ [5,255]. Thus, e, is a negative example witnessing
the improved precision of F over F.

Our task is to synthesize a more precise operator than the sound
operator F we obtained from Step A. In Step A, we iteratively col-
lected positive examples in E,. Since F is sound, we know that
it includes all the positive examples in E,. Hence, a more precise
operator F, must include all the positive examples in E,, and ad-
ditionally exclude a new negative example e, that F includes. We
use the following query (Eqn. 3) to find an operator F, and the
corresponding negative example e, = (P;, Q;, 2,), such that the
current best operator we have (F) includes the concrete value z, in
its output when given inputs P; and Q;, but F,’s output excludes it.

3Fe, Pi, Qi 20 + 20 # Fe (P, Qi) A 2o € F(PL Qi) A [\ z € Fe(P,Q) (3)
(P,Q,z)€Ep

Verifying soundness of F,. Our new candidate operator F, need not
be sound. We call verifyp,, to check its soundness. If verifypog
returns a counterexample €p, I?c is unsound. We add ep to the set
E,, ensuring we do not discover the same F, again. For example,
let us say that after Step A, we had our sound candidate operator
F(P,Q) = [0, P,+Qu],and E, ={([2,5]. [4.8],10), ([1,1], [4,4].5)}-
In Step B, we might synthesize an operator F.(P, Q) = [0,2+Q,]
and e, =([4, 6], [3,5],9) because 9 is excluded by F.([4,6],[3,5]).
but included by F([4, 6], [3,5]). When we call verifypmg(ﬁ;), we
find that F, is unsound, and we may obtain a counterexample such
as ([5,5], [6,6],11), which is then added to E,,.

When verify,rog does not return a counterexample, F, is sound.
We add the negative example e, to E,, update our candidate F to
F,, and continue the loop to explore an even more precise operator.
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Using synthpeg to synthesize new operators. During synthesis, the
goal is to ensure that each new candidate we synthesize is more
precise than the current candidate. The current candidate F already
excludes the last discovered negative example. To improve upon its
precision, a new candidate F, must continue to exclude all previ-
ously discovered negative examples in E,, include all the positive
examples in E,, and further exclude one additional negative exam-
ple relative to F. Hence, we use synthy.g in our algorithm (Eqn. 4),
which encodes this constraint. At the beginning of Step B, when
there are no negative examples in E,, synth,., simplifies to Eqn. 3.

synthneg(F,Ep,En) 2
3Fe, Pi, Qi %0 : 20 & Fe(Pi, Q1) Azo € F(P1,Q;) A
zeFR(PQ) N\ zeF(PQ) (¥

(P,Q.2)€Ep (P,Q,z)€En

Terminating with a precise operator. Step B uses the CEGIS paradigm
to iteratively construct more precise operators that are sound using
synthpeg and verify,rog. The algorithm terminates when synthyeg
fails to find a more precise operator than the current candidate F.
At that point, the current candidate F is returned.

Discovering optimally precise operators. If the maximally precise
operator is expressible in our library of components, then synthesiz-
ing negative examples from any candidate F that overapproximates
it will yield a new abstract operator and a new negative example
that witnesses the overapproximation, enabling further refinement.
Hence, our algorithm will eventually converge to the optimally
precise operator (once no such refinements are possible). However,
when the optimally precise operator is not expressible, there may
exist multiple sound abstract operators that are incomparable in
precision. For example, suppose the library only permits operators
that return [0, a+b] or [a+b, 255], where a, b are interval endpoints.
In that case, F;(P,Q) = [0,P,+Q,] and F,(P,Q) = [P;+Qy, 255]
are both sound but incomparable: each is more precise than the
other on a different subset of inputs. Our algorithm may settle on
a locally optimal operator, i.e., one that is sound and cannot be
refined further without violating soundness. This is the best any
algorithm can do with the provided library of components.

Intermediate operators. Our algorithm discovers unsound opera-
tors that nonetheless satisfy many positive and negative examples.
These intermediate operators are valuable test inputs for verifier
testing frameworks, as they are nearly sound over a large portion
of the input space. Further, rerunning synthesis with a different ran-
dom seed generates a different set of positive examples E,, biasing
the search toward different regions of the program space, yielding
sound yet incomparably precise and diverse unsound operators.

3.3 Scaling Synthesis

Component-based synthesis scales poorly: the synthesis constraints
grow quadratically with the number of components [9, 11], increas-
ing the time to solve them. To improve scalability, we leverage
knowledge about the abstract domain and the concrete operator
to introduce library components that encapsulate the actions of
multiple primitive components. We call such components CISC com-
ponents, akin to complex instructions in a hardware architecture.
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Abstract | Components CISC Time
Ops (#)

operator #) components (m)
Base | CISC S U
tnum_or 12 - - <1 4 2
tnum_xor 12 - - <1 3 2
tnum_and 12 - - 41 4 1
tnum_add 14 10 or3, andpey 231 4 4
tnum_sub 14 10 or3, andpeg 886 5 5

. add! ., add?,,
uint_add | 15 13 of? " of 30 |10 | 10
selqdq

uint_sub 15 13 selgup 106 8 8

andneg(a,b) = a&~b ors(a,byc)2alb|c
addéf(a,b) 2(a<a+b)?1:0 addjf(a,b) 2 (a>a+b)?21:0
selgga(a, b,c,d) = a?b:(c+d) selgp(a,bc,d)=a?b: (c—d)

Table 1: Synthesis results for tristate (tnum) and unsigned interval
(uint) abstract operators. Columns (L—R): operator name; number
of components for Base and CISC configurations; CISC components
used (if any); synthesis time (in minutes); and number of sound (S)
and unsound (U) operators synthesized.

For example, we know an abstract addition operator will need to
detect overflow, which for two machine integers x and y can be
expressed as x > x + y. Instead of using a basic if-then-else con-
ditional component like ite(o, a, b) 2 0? a: b (where o is a single
boolean input), our CISC version supports compound conditions di-
rectly: ite’ (01, 02, a,b) = (0; > 01 + 02) ? a : b. This approach helps
reduce the number of components in the library and the length of
candidate programs, enabling us to synthesize candidate operators
for eBPF domains like unsigned intervals and tnums.

4 Evaluation

Our prototype is tailored to synthesize abstract operators for the
eBPF verifier. It implements the algorithm in Figure 1 using compo-
nent-based synthesis and the Z3 SMT solver [7]. It is open source
and publicly available [38].

We evaluate the effectiveness of our algorithm by synthesizing
abstract operators for the tristate number (tnum) and unsigned
interval (uint) domains. Each synthesis instance is provided with
a component library, a concrete operator f, and a concretization
function y4 for abstract domain A. We use f and y, to construct the
formulae described in §3, which are then passed to the SMT solver.
All calls to the SMT solver were given a timeout of 24 hours. We
want to evaluate our approach on the following: (1) the effectiveness
in synthesizing operators for the tnum and uint domains, (2) the
ability to discover precise operators, and (3) the ability to produce
interesting operators for testing verifier testing frameworks.

Ability to synthesize abstract operators. Table 1 presents the list of
operators that were synthesized with our approach. Abstract oper-
ators for the tristate and interval domains require a small number
of components (at most 15). Our prototype is able to synthesize
abstract operators for bitwise or, bitwise xor, and bitwise and in
the tristate domain within 1 hour. In contrast, our prototype could
not synthesize an operator for add and sub even after 24 hours
because they need relatively more components. After introducing
CISC components (§3.3), our prototype is able to synthesize the
abstract operators for add and sub in the tristate domain and also
the ones for add and sub in the unsigned interval domain.
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loverflows = P1 > P1 + Q1
uoverflows = Pu > Pu + Qu
if loverflows or uoverflows: if uoverflows and not loverflows:
return [0, UMAX] return [0, UMAX]
else: else:
return [P1 + Ql, Pu + Qul return [P1 + Ql, Pu + Qu]

uoverflows = Pu > Pu + Qu
loverflows = P1 > P1 + Ql

Figure 2: Addition operators in the unsigned interval domain. L: The
eBPF implementation. R: More precise implementation synthesized
by our algorithm. The inputs to the operators are abstract interval
values a=[P1,Pu] and b=[Q1,Qu].

Ability to generate precise operators. For add and sub in the un-
signed interval domain, our prototype synthesized a more pre-
cise abstract operator than existing implementations in the eBPF
verifier [21, 22]. Consider two input intervals P = [P1, Pu] and
Q = [Q1, Qu] in this domain. Figure 2-L shows the existing eBPF
operator for add, and Figure 2-R shows our new operator, which
leverages the wrap-around semantics of unsigned overflow. Specif-
ically, there are three possible cases for adding any x € P and
y € Q. (1) No Overflow: even the largest sum Pu + Qu < UINT_MAX.
No x + y addition overflows. (2) Partial Overflow: the smallest
sum Pl +Ql < UINT_MAX is within range, but the largest sum
Pu 4+ Qu > UINT_MAX. Some additions x + y overflow, and some do
not. (3) Full Overflow: even the smallest sum P1 + Q1 > UINT_MAX.
Every addition x + y overflows, and all the results wrap around.

While the existing eBPF operator returns the unbounded inter-
val [0, UINT_MAX] whenever any overflow is possible, i.e., cases (2)
and (3), our synthesized operator returns [0, UINT_MAX] only in
case (2). It safely returns the interval [P1 + Q1, Q1 + Qu] in case (1)
(since no overflow occurs) and case (3) (since all results overflow
and the returned interval captures the wrapped-around additions).
This strategy yields strictly more precise results than the baseline
operator. For example, considering 8-bit integers, given intervals
P =[163,215] and Q = [156, 213], all concrete sums overflow. The
baseline operator returns [0, 255], whereas our synthesized opera-
tor produces the more precise [63,172].

Our prototype also synthesized an operator for sub in the inter-
val domain that is more precise than the existing implementation.
The reasoning for the precision improvement is similar, but ap-
plied to underflow instead of overflow. Our patch that implements
the operator from Figure 2-R, as well as the operator for interval
subtraction, has been merged into the latest Linux kernels [35].

Generating tests for various frameworks. Our prototype generates
a rich variety of abstract operators, which can be used to test the
eBPF ecosystem. The last column of Table 1 shows the number of
sound and unsound operators synthesized by our prototype in one
iteration. For example, while synthesizing the operator for bitwise
and in the tristate domain, our algorithm discovered one unsound
and four sound intermediate operators. Table 2 shows three of the
sound synthesized operators for and in the tristate domain, each
more precise than the ones to its left. Rerunning our prototype with
different random seeds yields an even broader set of operators. For
example, over 10 runs with different seeds, our prototype cumula-
tively discovered 49/12 (sound/unsound) tnum_and, 36/11 tnum_or,
and 27/16 tnum_xor operators.

Testing sound and unsound operators using Agni. We substituted
the sound and unsound operators generated by our prototype into

Vishwanathan et al.

ol = bv & bm ol = am & av ol = bv & av
02 = bv | av 02 = am | av 02 = am | av
03 =02 | am 03 = bm | bv 03 = am & bv
return (ol, 03) 04 = 02 & 03 04 =03 | bm

return (o1, o4) o5 = 02 & o4

return (o1, o5)
Table 2: Three sound candidate abstract operators for tristate bitwise
and, in increasing order of precision (left to right). The inputs are
tristate abstract values a = (av, am) and b = (bv, bm).

the Linux eBPF verifier’s C code and tested these operators using
Agni [37], a framework for testing the soundness of operators. We
tested two sound and two unsound operators for each of tnum and,
or, xor, add, and sub. Agni verified the correctness of the sound
operators within a minute and flagged the unsound ones within 10
minutes. In general, the sound and unsound operators synthesized
by our approach can serve as targeted test cases for evaluating and
improving eBPF verifier testing tools [10, 12, 33, 34].

5 Related Work

To our knowledge, this paper represents the first effort that system-
atically attempts to improve the precision of the Linux kernel’s eBPF
abstract operators. Our approach is closely related to Amurth [16],
which also synthesizes abstract operators. It generalizes the prior
work on synthesizing abstract operators for low-level machine
code verification [26, 27]. We borrow the core idea of refining pre-
cision using negative examples within a CEGIS loop from Amurth.
Amurth uses two non-deterministically interleaved CEGIS loops for
soundness and precision. Negative examples are added optimisti-
cally to improve precision, even if they conflict with prior positive
examples. This design allows Amurth to aggressively pursue preci-
sion improvements. To resolve resulting inconsistencies, Amurth
invokes a MaxSAT solver [19] to retain a maximal subset of compat-
ible negative examples. In contrast, our algorithm adds a negative
example only if it preserves soundness, ensuring consistency of
examples by design and avoiding the need for MaxSAT. This yields
a more straightforward, deterministic refinement process. In addi-
tion, Amurth uses the Sketch program synthesis framework [30],
while we adopt a component-based synthesis approach [11].

6 Conclusion

We present an approach to automatically synthesize sound and pre-
cise abstract operators for use in the eBPF verifier. The synthesized
operators match or improve the precision of existing implementa-
tions. Further, numerous sound and unsound operators synthesized
during this process can serve as test cases for the ecosystem of
verifiers and fuzzers for the eBPF verifier. Our results enhance both
the verifier’s core analyses and the infrastructure used to test and
validate them.
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